高温阴离子交换膜燃料电池是氢燃料电池中的“佼佼者”,具有成本低的优势。要真正实现高温阴离子交换膜燃料电池的推广应用,需要解决其复杂的“水管理”难题,以进一步提高燃料电池的耐久性。
这也是有史以来第一个用于低成本绿色氢的工业规模阴离子交换膜(aem)电解槽。...在四种主流电解水制氢技术中,与pem以及碱性制氢方法相比,soec通过高温电解制氢,凭借高温优势,soec电解水可提供更高效的能源转换效率。
电解水制备氢气可以分为碱性电解水(alk)、质子交换电解水(pem)、高温固体氧化物电解水(soec)和固体聚合物阴离子交换膜电解水(aem)制氢。
在位于氢产业链上游的制氢环节,常见的电解制氢技术路线包括碱性电解(alk),质子交换膜电解(pem)、固体聚合物阴离子交换膜电解(aem)、高温固体氧化物电解(soec),其中碱性电解水目前技术成熟度最高
研究内容:(1)研究高效阴离子交换膜电解水制氢关键技术,研制20kw级、5000a/m2电流密度的高效阴离子交换膜电解水制氢装置,并完成应用示范验证;(2)研究基于云端大数据平台的车用燃料电池健康监测及寿命优化关键技术
研究内容:(1)研究高效阴离子交换膜电解水制氢关键技术,研制20kw级、5000a/m2电流密度的高效阴离子交换膜电解水制氢装置,并完成应用示范验证;(2)研究基于云端大数据平台的车用燃料电池健康监测及寿命优化关键技术
当前,主流电解水制氢技术包括碱性水电解(alk)、质子交换膜电解(pem)、高温固体氧化物电解(soec)、固体聚合物阴离子交换膜电解(aem)四种。
一家针对aem运行情况做过实验的企业技术负责人告诉高工氢电,普通的阴离子交换膜太薄,在高温以及碱性条件下,非常容易破裂。...科技部2022年度“催化科学”重点专项项目申报指南于“可再生能源转化与存储的催化科学”子项下设“阴离子交换膜电解水制氢研究”专项,拟对高效催化剂的设计方法及规模化可控制备方法;高离子电导率、高稳定性阴离子交换膜
该领域计划投入4200万欧元资助6个项目,包括:开发稳定的碱性阴离子交换膜;开发具备质子电导率的中温固体氧化物燃料电池电解质;利用3d打印技术生产高表面积电解质的可行性研究;开发适用于200-450℃的质子导电材料
进一步研究发现,含有商用阴离子交换膜的 ac 电极与 ca-cdi 的组合 cdi 装置对硬水的软化效果最好li 等针对硬水软化研究了 1 种电容去离子选择性吸附电极的制备方法:将聚丙烯酸钠在酸性条件下溶解