摘要:叙述了低温等离子体、光催化和生物处理三种新技术的废气净化原理和国内外研究进展情况,并对其发展前景和研究方向进行了探讨。这些新技术不但可有效解决以往的技术难题,而且具有投资少、运行费用低、停留时间短、高效、稳定、反应彻底且无二次污染等,克服了传统方法中的许多缺陷,将在低浓度VOCs废气治理方面发挥重要的作用。
随着经济的发展和人民生活水平的提高,空气中的挥发性有机物(VOCs)污染问题日益受到人们的重视。VOCs是指空气中存在的室温下蒸气压大于70.9lPa,沸点260℃以下的挥发性有机物质,被视为列为粉尘之后的第二大类空气污染物。1990年美国《清洁空气法》修正案列举了189种有毒有害物质,其中大部分是VOCs。1993~2003年我国相继颁发了《大气污染物综合排放标准》、《恶臭污染物排放标准》和《室内空气质量标准》,因此,开发适用的VOCs治理技术已刻不容缓。
由于废气中VOCs污染物往往浓度低(<3000mg/m3),气量大、污染面广,如热力焚烧、催化燃烧、冷凝、吸收和吸附等传统的处理技术往往不适用,不是其处理效果达不到要求,就是投资或运行成本太高,迫使人们寻求和开发新的适用技术。
近年来,低温等离子体、光催化氧化和生物处理等新技术在处理低浓度VOCs废气方面已显示出其技术优势和很好的市场前景,本文将介绍这些新技术。
1低温等离子体技术
1.1原理
等离子体是含有大量电子、离子、分子、中性原子、激发态原子、光子和自由基等组成的物质的第四种形态。其总正负电荷数相等宏观上呈电中性,但具有导电和受电磁影响的性质,表现出很高的化学活性。根据体系能量状态、温度和离子密度,等离子体通常可分为高温等离子体和低温等离子体(包括热等离子体和冷等离子体)。高温等离子体的电离度接近,各种粒子的温度几乎相同,并且体系处于热力学平衡状态,它主要应用于受控热核反应研究方面。低温等离子体则处于热力学非平衡状态,各种粒子温度并不相同。
低温等离子体可通过前沿陡、脉宽窄(纳秒级)的高压脉冲放电在常温常压下获得,其中的高能电子和O˙、OH˙等活性粒子可与各种污染物如CO、HC、NOX、SOX、H2S、RSH等发生作用,转化为CO2、H2O、N2、S、SO2等无害或低害物质,从而使废气得到净化。它可促使一些在通常条件下不易进行的化学反应得以进行,甚至在极短时间内完成,故属低浓度VOCs治理的前沿技术。
1.2研究进展
低温等离子体主要是由气体放电产生的,与现代工业关系密切,应用十分广泛。按放电方式可分为辉光放电、电晕放电、介质阻挡放电、射频放电及微波放电等。脉冲电晕是一种新型等离子体技术,属于冷等离子体,可在常压、低温下工作且电子能量适中,因此通常被用于处理VOCs等有害气体。在20世纪80年代中期由Masuda和Mizuno等首先提出,目前在中国、日本、俄罗斯和加拿大等国家都有研究[1,2]。
FutamuraS等[3]对有害大气污染物(HAP)在低温等离子体化学处理中金属氧化物的催化活性进行了研究,在没有MnO2作催化剂时,苯的摩尔转化率为30%,而在有MnO2作催化剂时,苯的转化率可高达94%。KangM等[4]在常压下用等离子体TiO2催化体系去除初始浓度为1000mg/m3的甲苯废气,仅有O2等离子体没有TiO2催化剂时,甲苯去除率为40%;在TiO2/O2等离子体下,去除率达到70%;在O2等离子体中,TiO2负载于γ-Al2O3上时,甲苯的去除率达到80%。这些研究表明,利用等离子体与催化反应的协同效应,以提高有机废气净化率、降低能耗是成功的。
近些年,国内学者对低温等离子体的研究也在深入。于勇等[5]用介质屏蔽降解CF3Br,降解率达到55%。李锻等[6]将双极性脉冲高压引入介质阻挡反应器对氯苯和甲苯的分解特性进行了实验研究。而以冯春杨[7]、晏乃强[8]和黄立维[9]等人开展了脉冲电晕去除多种有机废气的研究,初始浓度为76.8mg/m3,苯的去除率达到61.4%,并对比了线—筒式和线—板式二种反应器对甲苯的去除率,在以Mn、Fe等作为催化剂时,可使去除率提高,催化剂活性的排序为Mn>Fe>Co>Ti>Ni>Pd>Cu>V,在去除各种有机废气中,甲醛最易去除,二氯甲烷最难,甲苯、乙醇、丙酮则处于其间。周远翔[10]等还应用低温等离子体技术处理粉尘中二英,去除率达81%。
因此,低温等离子体技术应用的可行性和条件试验已较充分,也有了大量理论基础;已为这项工艺简单、适用性强、流程短、能耗低、易于操作和自动化的新技术早日工业化打下了充分的基础。
2光催化技术
2.1作用机理
近年来,光催化技术处理气态污染物也愈来愈受到世界各国的重视。研究表明,该技术在常温、常压条件下能将废气中的有机物分解为CO2、H2O和其它无机物,有较大潜在应用价值。自l972年日本Fujishima和HondaL发现TiO2单晶电极分解水以来,标志着纳米半导体多相光催化新时代的开始,在多相光催化反应所应用的半导体催化剂中,国外通常采用TiO2粉末作为光催化剂降解苯系物[11],但
TiO2的禁带较宽,能利用太阳能仅占总太阳能的3%,为了提高太阳能的利用率,各国学者围绕高活性纳米TiO2的制备、多相光催化机理及提高TiO2的光催化效率等方面作了大量的探索工作。
纳米TiO2为n-型半导体,具有三种不同晶相结构:锐钛矿型(Anatase)、板钛矿型(Brookite)、金红石型(Rutile)。其中锐钛型TiO2具有较高的光催化氧化能力,其禁带宽度为Eg=3.2eV,相当于波长为387nm光的能量,处于紫外区。在紫外光作用下它的价带上的电子(e-)就可以被激发跃迁到导带,在价带上产生相应的空穴(h+),随后h+和e-与吸附在TiO2表面上的H2O,O2等发生作用,生成˙OH,˙O2-等高活性基团,当然产生的空穴和电子还有复合的可能。其机理如下:
对于纯的TiO2而言,当受到波长λ=387.5nm的紫外光照射时会产生光生电子(e-)和光生空穴(h+)。E-和h+也能够重新合并,使光能转化为热能而散失;当有适当的俘获剂或表面空位时,e-与h+的复合会受到抑制,氧化还原反应就会发生。光生电子的俘获剂主要是吸附在TiO2表面的O2。O2吸收电子后,可以生成H2O2和一系列自由基。光催化体系中OH˙是主要的自由基,该自由基具有很强的氧化作用,且其氧化作用几乎无选择性,可以氧化包括难生物降解的化合物在内的多种有机物。光生电子也可与O2、H2O等物质反应生成一系列自由基,进而氧化有机物,从而达到消除污染物的目的。
2.2研究进展
TiO2光催化技术对工业废水具有很强的处理能力,应用已较广泛。而利用TiO2作为光催化剂净化空气的技术在国外已逐渐成熟,但在国内的研究属方兴未艾。
空气中大部分有机污染物均可用TiO2光催化氧化去除,文献报道了对烯烃、醇、酮、醛、芳香族化合物、有机酸、胺、有机复合物、三氯乙烯等气态有机物的光催化降解,其量子效率是降解水溶液中同样有机物的10倍以上。Vorontsov等[12]对TiO2气相光催化降解(C2H5)2S时发现,主要气相产物包括(C2H2)2S2、CH3CHO、CH3CH2OH、C2H4以及微量产物CH3COOH、C2H5S(CO)CH3和SO2。
国内对于TiO2光催化应用于废气处理还比较少见,近几年主要针对室内空气和低浓度苯系物作了初步实验研究和动力学探讨,详见表1。
人们还注意到具有磁性的光催化可利用磁场使TiO2易于回收,因此开展磁性TiO2光催化剂的性能研究和制备探索,利用TiO2光催化悬浮体系反应比表面积大的特点,以制造出新的高效光催化反应器。
3生物净化
3.1净化机理
土壤是微生物的大本营,早在1957年,美国就发明了用土壤过滤法对H2S除臭的专利,当时的技术仅仅是由布气管上覆盖土壤构成。而20世纪80年代欧洲已有相当数量的废气生物处理装置投入运行,80~90年代是欧洲废气生物处理发展的黄金时期[17~18],如1994年在德国应用的生物处理工艺比例已达78%。由于它有具有效果好而稳定、运行费用低、无二次污染等优点,目前在发达国家已成为成熟工艺和处理含VOCs废气的首选技术;在国内其优越性也日益被人们所认识,并得到越来越广泛的应用。
废气的生物处理过程,实质是附着在生物填料介质上的微生物在适宜的环境条件下,利用废气中的污染物作为碳源和能源,维持其生命活动,并将它们分解为CO2、H2O等无害无机物的过程。废气中污染物首先经历由气相到固/液相的传质过程,然后才在固/液相中被微生物降解。反应器类型主要有三种:生物洗涤塔、生物过滤塔和生物滴滤塔,另外,最近开始进入人们研究视野的反应器类型还有生物转鼓。
3.2研究进展
废气的生物处理过程中的传质过程主要由两种理论解释,一种是荷兰学者Ottengraf依据吸收操作的双膜理论而提出的“吸收-生物膜”理论,一种是孙佩石等依据吸附理论而提出的吸附-生物膜理论。近年来,生物处理过程的研究着重对上述理论进行修补、改进,如Zarook、Delhomenietomski等[19~21]提出了气态污染物轴流扩散理论,认为填料尺寸大小与表面积是影响其气态污染物生物降解的主要因素,另外运用质量和能量平衡理论验证了填料床存在水分变化,并阐述了水分变化的机理。
生物滤床和生物滴滤床均可处理混合的复杂废气,如臭气和VOCs[22]、丙酮,甲苯和三氯乙烯的混合物[17],甲苯、乙醇和丁醇[23],且能达到好的处理效果。LeCloirec等[24]对VOCs的去除进行描述,讨论生物滤床、生物滴滤床和生物洗涤床不同工艺的进展及个例,并且认为生物滴滤床中疏水性的VOCs传质是个限制因素。Deshusses等[25]还对生物滤床和生物滴滤床处理VOCs进行建模,对反应器设计和处理效果达到优化,并认为在生物滴滤床中需要合适pH、盐分、代谢产物的浓度以及营养液的补充。Cho等[26]对新颖的喜温微生物进行研究,包括较高温度的VOCs废气。
国内生物法处理低浓度VOC废气在近几年也得到迅速发展。孙石等[27,28]用生物法处理低浓度再生胶工业废气,取得了较好的效果,同时对工业废气中常见的甲苯、苯乙烯、甲醛、CS2,SO2,H2S,NOX等气态污染物进行净化实验。孙玉梅[29]则研究了生物过滤去除乙酸乙酯、含氨废气,陈建孟等[30]采用假细胞杆菌属GD11菌株对生物滴滤床接种挂膜,用来净化浓度为0.709mg/m3的二氯甲烷废气,EBRT为11.8s,去除率达97.6%,最适宜pH为7.0±0.5,温度为28.5±2℃。
4发展前景
综合上述,低温等离子体、光催化技术和生物技术对处理低浓度VOCs废气在技术上是可行的,特别是它们安全、高效、低能耗、无二次污染等优点,其应用前景均十分广阔;但目前国内它们不是还停留在实验研究阶段,就是还没有成为成熟技术,实现工业化应用还有大量工作要做。鉴此,作者提出三种新技术的发展前景展望如表2。
5结论和建议
低温等离子体、光催化和生物处理三种新技术,可在近期内有效解决传统技术对处理低浓度大气量废气没有适用技术的难题。随着我国经济的快速发展,每年由工业企业排放大量VOCs废气引起的污染依然十分严重,而我国是发展中国家,更需把有限的污染治理资金用好,以切实有效。而这三种新技术都具有投资少、运行费用低、废气停留时间短、高效、稳定、反应彻底且无二次污染等特点,可克服传统方法运行费用高、反应器庞大等缺陷,存在二次污染的缺点。必将在低浓度VOCs污染治理领域发挥巨大的作用。
新技术和新工艺的开发应用,必须投入足够的资金和力量,并进行深入的理论和工艺研究;另一方面,由于VOCs污染物种类繁多,实际排放废气过程复杂,根据具体情况选择适合的技术和工艺,将是我们面临的主要任务之一。
原标题:低浓度VOCs废气处理技术进展
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。