异位固化/稳定化技术1.1 技术名称技术名称:异位固化/稳定化,英文名称:Ex-Situ Solidification/Stabilization1.2 技术适用性1.2.1 适用的介质:污染土壤1.2.2 可处理的污染物类型:金属类、石棉、放射性物质、腐蚀性无机物、氰化物、砷化合物等无机物以及农药/除草剂、石油或多环芳烃类、多氯联苯类以及二噁英等有机化合物。1.2.3 应用限制条件:不适用于挥发性有机化合物和以污染物总量为验收目标的项目。当需要添加较多的固化/稳定剂时,对土壤的增容效应较大,会显著增加后续土壤处置费用。1.3 技术介绍1.3.1 原理

首页> 环境修复> 土壤修复> 技术> 正文

污染场地修复技术报告之一:异位固化/稳定化技术

2014-11-06 14:20 来源: 北极星环保网

异位固化/稳定化技术

1.1 技术名称

技术名称:异位固化/稳定化,英文名称:Ex-Situ Solidification/Stabilization

1.2 技术适用性

1.2.1 适用的介质:污染土壤

1.2.2 可处理的污染物类型:金属类、石棉、放射性物质、腐蚀性无机物、氰化物、砷化合物等无机物以及农药/除草剂、石油或多环芳烃类、多氯联苯类以及二噁英等有机化合物。

1.2.3 应用限制条件:不适用于挥发性有机化合物和以污染物总量为验收目标的项目。

当需要添加较多的固化/稳定剂时,对土壤的增容效应较大,会显著增加后续土壤处置费用。

1.3 技术介绍

1.3.1 原理:向污染土壤中添加固化剂/稳定化剂,经充分混合,使其与污染介质、污染物发生物理、化学作用,将污染土壤固封为结构完整的具有低渗透性的固化体,或将污染物转化成化学性质不活泼形态,降低污染物在环境中的迁移和扩散。

1.3.2 系统构成和主要设备:主要由土壤预处理系统、固化/稳定剂添加系统、土壤与固化/稳定剂混合搅拌系统组成。其中,土壤预处理系统具体包括土壤水分调节系统、土壤杂质筛分系统、土壤破碎系统。主要设备包括土壤挖掘系统(如挖掘机等)、土壤水分调节系统(如输送泵、喷雾器、脱水机等)、土壤筛分破碎设备(如振动筛、筛分破碎斗、破碎机、土壤破碎斗、旋耕机等)、土壤与固化/稳定剂混合搅拌设备(双轴搅拌机、单轴螺旋搅拌机、链锤式搅拌机、切割锤击混合式搅拌机等)。

1.4 技术应用基础和前期准备

土壤物理性质(机械组成、含水率等)、化学特性(有机质含量、pH 值等)、污染特性(污染物种类、污染程度等)均会影响到异位固化/稳定修复技术的适用性及其修复效果。应针对不同类型的污染物,特别是砷、铬等毒性和活性较大的污染物,选择不同的固化/稳定剂;应基于土壤类型研究固化/稳定剂的添加量与污染物浸出毒性的相互关系,确定不同污染物浓度时的最佳固化/稳定剂添加量。

1.5 主要实施过程

(1)根据场地污染空间分布信息进行测量放线之后开始土壤挖掘;(2)挖掘出的土壤根据情况进行土壤预处理(水分调节、土壤杂质筛分、土壤破碎等);(3)固化/稳定剂添加;(4)土壤与固化/稳定剂混合搅拌、养护;(5)固化/稳定体的监测与处置、验收。其中(2)、(3)、(4)也可以在一体式混合搅拌设备中同时完成。

1.6 运行维护和监测

(1)土壤挖掘安全:围栏封闭作业,设立警示标志,规避地下隐蔽设施。(2)安全防护:工人应注意劳动防护。(3)防止二次扩散:采取措施防止雨水进入土壤,防止降雨冲洗土壤携带污染物进入周边环境,防止刮风尘土飞扬,造成二次扩散。(4)长期监测:根据国外经验,对于固化/稳定化后采用回填处理的土壤,需要在地下水的下游设置至少1 口监测井,每季度监测一次,持续2 年,确保没有泄露。

1.7 修复周期及参考成本

1.3.3 关键技术参数或指标

(1)固化/稳定剂的种类及添加量

固化/稳定剂的成分及添加量将显著影响土壤污染物的稳定效果,应通过试验确定固化/稳定剂的配方和添加量,并考虑一定的安全系数。目前国外应用的固化/稳定化技术药剂添加量大都低于20%。

(2)土壤破碎程度

土壤破碎程度大有利于后续与固化/稳定剂的充分混合接触,一般要求土壤颗粒最大的尺寸不宜大于5 cm。

(3)土壤与固化/稳定剂的混匀程度

混合程度是该技术一个关键性瓶颈指标,混合越均匀固化/稳定化效果越好。土壤与固化/稳定剂的混匀程度往往依靠现场工程师的经验判断,国内外还缺乏相关标准。

(4)土壤固化/稳定化处理效果评价

土壤固化/稳定化修复效果通常需要物理和化学两类评价指标:物理指标包括无侧限抗压强度、渗透系数;化学指标为浸出液浓度。

(a)物理学评价指标

经固化/稳定化处理后的固化体,其无侧限抗压强度要求大于50psi(0.35MPa),而固化后用于建筑材料的无侧限抗压强度至少要求达到4000 psi(27.58MPa)。渗透系数表征土壤对水分流动的传导能力,经固化处理后的渗透系数一般要求不大于1×10-6 cm/s。

(b)化学评价指标

针对固化/稳定化后土壤的不同再利用和处置方式,采用合适的浸出方法和评价标准。典型固化/稳定化处理效果评价方法详见表1-1。

1.4 技术应用基础和前期准备

土壤物理性质(机械组成、含水率等)、化学特性(有机质含量、pH 值等)、污染特性(污染物种类、污染程度等)均会影响到异位固化/稳定修复技术的适用性及其修复效果。应针对不同类型的污染物,特别是砷、铬等毒性和活性较大的污染物,选择不同的固化/稳定剂;应基于土壤类型研究固化/稳定剂的添加量与污染物浸出毒性的相互关系,确定不同污染物浓度时的最佳固化/稳定剂添加量。

1.5 主要实施过程

(1)根据场地污染空间分布信息进行测量放线之后开始土壤挖掘;(2)挖掘出的土壤

根据情况进行土壤预处理(水分调节、土壤杂质筛分、土壤破碎等);(3)固化/稳定剂添加;

(4)土壤与固化/稳定剂混合搅拌、养护;(5)固化/稳定体的监测与处置、验收。其中(2)、

(3)、(4)也可以在一体式混合搅拌设备中同时完成。

1.6 运行维护和监测

(1)土壤挖掘安全:围栏封闭作业,设立警示标志,规避地下隐蔽设施。(2)安全防护:工人应注意劳动防护。(3)防止二次扩散:采取措施防止雨水进入土壤,防止降雨冲洗土壤携带污染物进入周边环境,防止刮风尘土飞扬,造成二次扩散。(4)长期监测:根据国外经验,对于固化/稳定化后采用回填处理的土壤,需要在地下水的下游设置至少1 口监测井,每季度监测一次,持续2 年,确保没有泄露。

1.7 修复周期及参考成本

污染土壤方量、修复工艺、土壤养护时间、施工设备、修复现场平面布局等均显著影响处理周期。一般而言,水泥基固化修复需要较长的养护时间,稳定化修复需要的养护时间较短。根据施工机械台班等设置情况,异位土壤固化/稳定化修复的每日处理量从100 至1200m3不等。根据污染物不同类型及其污染程度需要添加不同剂量、不同种类的固化/稳定剂;土壤污染深度、挖掘难易程度、短驳距离长短等都会影响修复成本。据美国EPA 数据显示,对于小型场地(1000 立方码〔cy〕,约合765 m3)处理成本约为160-245 美元/ m3,对于大型场地(50000cy,约合38228 m3)处理成本约为90-190 美元/ m3;国内一般为500-1500 元/m3。

1.8 国外应用情况

固化/稳定化是比较成熟的固体废物处置技术,上世纪八九十年代,美国环境保护署率先将固化/稳定化技术用于污染土壤的修复研究。据美国超级基金项目统计,1982-2008 年污染源处理项目中,有203 项应用该技术,占污染源异位修复项目的21.4%,是使用最多的污染源修复技术。2004 年,英国环保署组织编写了《污染土壤稳定/固化处理技术导则》。

1.9 国内案例分析

1.9.1 国内应用情况

我国的污染土壤固化/稳定化研究起步于本世纪初。2010 年以来,该技术在工程上的应用快速增长,已成为重金属污染土壤修复的主要技术方法之一。据不完全统计,目前国内实施土壤固化/稳定化修复的工程案例已超过50 项。

1.9.2 国内案例介绍

(1)工程背景:某地块原为某发电厂,将开发为文化创意街区。对场地进行网格化划分后进行土壤质量监测,确定污染单元后进行加密监测。由于该地块要求尽量削减修复时间,以缓解地块再开发面临的施工进度压力,同时该地块对现场遗留土壤质量的要求较高,综合考虑以上因素,确定采用污染土壤清挖、现场处理、异地处置的方式对地块进行修复,以《展览会用地土壤环境质量评价标准(暂行)》(HJ350-2007)的A 级标准作场地清理的判断标准。

(2)工程规模:场地面积为5400 m2,土壤污染深度约为1-4 m,需修复的总土方量约为1.24 万 m3。

(3)主要污染物及污染程度:场地大部分地块土壤污染物为重金属铜、铅、锌,其中一个地块为多环芳烃。污染物的最大监测浓度为:铜7220 mg/kg、铅4150 mg/kg、锌3340mg/kg、苯并(a)蒽4.6 mg/kg、苯并(b)荧蒽5.78 mg/kg、苯并(a)芘4.07 mg/kg。

(4)土壤理化特征:土壤为粘性土,呈微碱性。铜、铅、锌在土壤中主要以二价阳离子形式存在,较易转化为氢氧化物或被吸附。

(5)技术选择:该修复项目要求时间短、修复费用低,同时污染物以重金属和低浓度的多环芳烃为主,基于现场土壤开展了异位固化/稳定修复技术可行性评价研究,该技术能满足制定的修复目标;从场地特征、资源需求、成本、环境、安全、健康、时间等方面进行详细评估,最终选定处理时间短、技术成熟操作灵活、且对场地水文地质特性要求较为宽松的固化/稳定化技术进行处理。

(6)工艺流程和关键设备

修复工程技术路线和施工流程主要过程包括污染土壤挖掘、土壤含水量控制、粉状稳定剂布料添加、混匀搅拌处理、养护反应、外运资源化利用、现场验收监测等环节。采用挖掘机进行土壤挖掘,挖掘深度深于1 m 时,土壤含水量较高,采用晾晒风干方式降低土壤含水量;使用筛分破碎铲斗进行土壤与粉状稳定剂的混匀搅拌,同时实现土壤的破碎。验收监测包括挖掘后基坑采样及污染物全量分析、稳定化处理后土壤采样及浸出毒性测试。关键设备主要有土壤挖掘设备、土壤短驳运输设备、土壤/稳定剂混合搅拌设备等组成。

(7)主要工艺及设备参数

基于现场污染土壤进行了大量实验室研究,确定了最佳稳定剂类型和添加量。稳定剂主要由粉煤灰、铁铝酸钙、高炉渣、硫酸钙以及碱性激活剂组成,另外,为了增强对重金属污染物的吸附作用添加了约30%的粘土矿物。稳定剂的质量添加比例为16.5%。土壤/稳定剂混合搅拌设备为筛分破碎铲斗,该设备能实现土壤与稳定剂的混匀,由于土壤水分含量较低,在混匀搅拌过程中可实现土壤的破碎。

(8)成本分析

该项目包含建设施工投资、稳定剂费用、设备投资、运行管理费用,处理成本约480万元,其运行过程中的主要能耗为挖掘机及筛分破碎铲斗的油耗、普通照明、生活用水用电,约为60 万元。

(9)修复效果

经过挖掘后所采集土壤样品中污染物含量均低于制定的修复目标值。稳定处理后的土壤,参照《固体废物浸出毒性浸出方法硫酸硝酸法》(HJ/T299-2007)提取浸出液,浸出液中污染物的浓度均低于制定的土壤浸出液污染物浓度目标值,满足修复要求并通过业主独立委托的某地环境监测中心验收监测。

(案例提供单位:上海市环境科学研究院)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。
展开全文
打开北极星学社APP,阅读体验更佳
2
收藏
投稿

打开北极星学社APP查看更多相关报道

今日
本周
本月
新闻排行榜

打开北极星学社APP,阅读体验更佳